If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-2=0=
a = 50; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·50·(-2)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*50}=\frac{-20}{100} =-1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*50}=\frac{20}{100} =1/5 $
| 2x(4)+6=12 | | 8x+13+2=3x-20 | | 3+10x=5(10x+4)-7 | | 2(x-5)+2x=2(2x-5) | | 3-(2+2x)=-(2x-1)= | | 2x+9+5x=3+9x | | Y=120+4x/x | | 1/x=250/1000 | | 12.2=x-12. | | 2x^2+22x+47=0 | | a/15=-9 | | 6x^2+10x+18x+30=0 | | 1.6^x=6 | | 3(2y+2)-2(2y+5)=-2 | | 7=11u-4u | | 3(x+8)+2(5x+4)=6 | | 4x+35=80 | | 3.2t=8 | | 6-7g=5-5g | | 5m^2+5m-60=0 | | -2y^2+6y+20=0 | | 6(4w+4)=8(w+7) | | c^2-15c+54=0 | | a^2-11a+28=10 | | B^2+3b+14=12 | | n^2-60=-4n | | 7x+14+4x+3=90 | | 36/x+2=60/49 | | 6x^2=4704 | | 6x-2=5x+25 | | 4y+3y+12=117 | | 6x-2+4x+2=90 |